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Theories of nematic order

By T. E. FABER
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, U.K.

The paper starts with a description of the molecular alignment that characterizes
nematic liquid crystals, and a brisk review of the classic mean field theories of this
alignment and of recent attempts to improve on the mean field approach by intro-
ducing the direct correlation function. It is argued that such theories are unsatisfactory
on two grounds: (a) because they fail to recognize that correlations of orientation
between adjacent molecules are of very much longer range than the intermolecular
potential — they fall off, indeed, only as fast as 1/R — and () because they fail to allow
for director fluctuations. The author’s continuum theory, which attributes entirely
to director fluctuations the fact that molecules in nematics are not perfectly aligned, is
free from these particular objections, and it seems to give the most complete description
currently available, especially at low temperatures, for the behaviour of simple model
nematics that have been studied by computer simulation. Its failure to match com-
pletely the behaviour of real nematics such as 5CB may be due to their polar character.
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In nematic liquid crystals the molecules are preferentially aligned with respect to a local axis of
symmetry, known as the director. Since the symmetry is in practice uniaxial (though nematics
that are locally biaxial are not difficult to imagine) the degree of alignment may be described for
rigid molecules by two order parameters

Sz = (Fy(cos f)) = (F(3cos? - 1)) (1)
and (Spe—S,,) = (3 sin? B cos 2y). (2)
In such expressions the angled brackets indicate an ensemble average for molecules in the
neighbourhood of interest, and «, £ and vy are Euler angles describing the orientation with

respect to the director of (x,y,z) axes fixed in each molecule. The molecular axes might be
chosen, for example, to coincide with the principal axes for the moment of inertia tensor for a

— single molecule, I;. If so, the conventional labelling (not wholly rational!) would be such as to
< ensure that
S E 1, >1,>1,

- " .. . . . .
= Thus the z axis is the ‘long’ axis of the molecule, and £ is the angle between this and the director,
E O while vy is the angle through which the molecule is rotated about its long axis, starting from an
= 8 orientation such that the director lies in the xz plane. It seems that, given this labelling, (S,, —S,,)

may in practice be of order +0.05 (Emsley ef al. 1981) and large enough to affect some bulk
properties, such as magnetic susceptibility (Faber e/ al. 1983). The parameter S,, is of order
+ 0.5, however, and is evidently of much greater significance. In what follows we shall lose sight
of (Szz—S,,), supposing the molecules to rotate with sufficient freedom about their long axes to
be treated as cylinders. We shall also lose sight of the complications that arise with molecules
that are not rigid.
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116 T. E. FABER

The parameter S,, is sometimes denoted by S, instead, to emphasize that it is one member of
the hierarchy of order parameters that are needed to define the full orientational distribution
function, f(f). We have

S(B) = 3 (2n+1)S,Py(cos ), 3)

with S, = (P, (cos ). (4)

It is invariably assumed that S, vanishes when 7 is odd, because nematics whose molecules carry
an electric dipole moment show no signs of ferroelectric ordering. As regards even =, it is fair to
say that for most nematics we know only S, (= 1) and S,; the experimental evidence relating to
S, is limited and not wholly reliable, except in the case of a few model nematics whose properties
have been investigated by the ‘experimental’ technique of computer simulation.

Nematic order is not completely described by f (), even when the rigid cylinder approximation
is sound, for this function tells us nothing about correlations in position and alignment for
neighbouring molecules. To describe the correlations in position that characterize a simple
isotropic liquid we need, of course, a two-body distribution function g(R). The equivalent
distribution function in a nematic needs to be written as *

g(Rys, oy, By oy i) = 8(1,2) f(B1) S (B2) (5)

(an equation that serves to define the function g(1,2) to which reference is made below). In
principle g(1, 2) describes correlations of orientation as well as of position, but if we wish to focus
attention on the former it may be simpler to discuss what have been termed the short-range
order parameters

0, (Ryp) = (P(cosOy,)), n=2,4,.., (6)
where 0,, is the angle between the z axes of two molecules whose centres are separated by Rj,.
Of course, the correlations must disappear, i.e. g(1, 2) must tend to unity, for large separations,
and it is readily shown that in that limit

oy = S3. (7)

The difference between o, and S provides a convenient measure of correlations of orientation
at smaller separations.

Finally, weshould note thatin a macroscopic sample of nematic the director does not necessarily
point in the same direction throughout. Various types of distortion, distinguished by the terms
splay, twist and bend, may be fed into the director field by distorting the boundary conditions
of the sample, at some cost in free energy. The cost is determined by the three Frank stiffness
constants, kq;, ksp and kyy. Even when the boundary conditions are consistent with uniform
alignment, some distortion always arises in the interior of the sample as a result of fluctuations,
and it is for this reason that nematic liquids scatter light as strongly as they do.

2. MEAN FIELD AND OTHER THEORIES

Attempts to understand the occurrence of nematic order have mostly (though by no means
exclusively) been based upon the pioneering work of either Onsager (1949) or Maier & Saupe
(1958, 1959, 1960). Since developments of Onsager’s theory are likely to receive attention else-
where in this symposium, we may concentrate initially on the Maier-Saupe approach. Its
essence may be understood by considering a model rather simpler than the one that Maier &

[ 46 ]
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THEORIES OF NEMATIC ORDER 117

Saupe initially proposed, i.e. a model in which the intermolecular pair potential contains an
anisotropic term of short range, of the form

V(1,2) = —e(Ry,) Py(cos by,). (8)
Let us evaluate the free energy for this model, making the approximation that correlations of
orientation can be completely ignored, i.e. that g(1, 2) depends only on R;,. This approximation
allows one to express the entropy of misalignment as — Nk{(Inf(f)) and it also allows one to

make use of (7) in evaluating the internal energy due to the interaction that (8) describes. The
order-dependent terms in the free energy therefore turn out to be

—CS3+ NET(nf(B)), (9)

where C should depend only on density. A simple variational argument (de Gennes 1974) shows
that to minimize the free energy we need

J(B) o< exp{—2CS, Py(cos B) [k T}, (10)

and a self-consistency relation then serves to fix S,, once C and T are known. Like the Weiss theory
of ferromagnetism, which it closely resembles, the theory of Maier & Saupe is a mean field one.
The mean field in question is — 2CS, and it couples with F,(cos ).

1 | | |
0 04 0.8
- T/T,

Ficure 1. The dependence of S, and Sy on T/ T, according to Maier & Saupe.

At constant density the Maier-Saupe theory involves only one adjustable parameter, the
constant C in (9) or, if preferred, the temperature 7;, at which the nematic phase becomes iso-
tropic on heating. It therefore predicts unique curves, reproduced in figure 1, for the variation
of S, and S, with T'/T,. The agreement with experiment is in some respects quite impressive, but
itis certainly not complete. Several attempts have therefore been made to improve the theory, by
adding terms to the intermolecular pair potential while retaining the mean field framework
(Chandrasekhar & Madhusudana 1971, 1973; Humphries ¢t al. 1972; Luckhurst et al. 1975;
Shen e al. 1981). At the expense of one or more additional adjustable parameters, the fit to
experiment can indeed be improved.

Unfortunately, the basic assumption that g(1, 2) is a function only of Ry, is not borne out by
the results of computer simulation studies. Admittedly these studies have so far been restricted
to rather simple models; the most detailed results available are for a 10 x 10 x 10 lattice of
‘molecules’, with periodic boundary conditions, which interact via an anisotropic potential of

[ 47 ]
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118 T. E. FABER

the sort that (8) describes, € being zero except between nearest neighbours (Zannoni 1979). But
if the correlations of orientation between neighbouring molecules are strong in such a lattice, as
they seem to be, they are presumably strong in real nematics too.

It has been suggested (e.g. by Luckhurst & Zannoni (1977)) that the mean field arguments of
Maier & Saupe should be used to discuss the alignment of clusters of molecules rather than of
individual molecules, and that the analysis of the mean molecular structure within a cluster
should be treated as a separate problem, to be solved exactly as far as possible. The approach is
superficially attractive, though to go much beyond the theory of Sheng & Wojtowicz (1976), who
considered clusters containing only two molecules, would evidently require much labour.

An alternative approach is that of Stecki & Kloczkowski (1979). In some ways this is more
closely related to the theory of Onsager than to that of Maier & Saupe, but the results can be
presented in a mean-field-like form, to the extent that an entropic term Nk7'{Inf(f)) can be
isolated from the free energy. The residuc is expressed, exactly, in terms of a direct correlation
function ¢(1, 2), which bears the same relation to g(1,2) that ¢(R) bears to g(R) for a simple
fluid, and similar functions of higher order, ¢;(1, 2, 3) and so on. In simple fluids variousapproxi-
mations are available to link ¢(R) to the intermolecular pair potential V(R), namely

Crxexp(—pV)-1, (11)
Cr —pV, (12)
and ¢~ g(R) {1 —cxp (BV)), (13)

with # = 1/kT. The second of these is used in the so-called mean spherical model of simple
liquids and the third corresponds to the Percus-Yevick model. Stecki and his coworkers use
similar equations to relate ¢(1, 2) to ¥ (1, 2) in cases where the potential is anisotropic and where
the molecules are perhaps aligned. They have been careful to restrict their calculations so far to
circumstances where ¢5(1, 2, 3), etc., can be neglected. This restriction means that while they
supply expressions for the change in free energy due to small fluctuations in S, about its equi-
librium value, or due to gradual changes in the orientation of the director, they do not attempt
to calculate curves for S, and S in the nematic phase to replace those plotted in figure 1. Other
authors have been less cautious (Ruijgrok & Sokalski 1982; Wagner 1981).

Itis clear that Stecki’s approach is capable in principle of describing correlations of orientation
between nearest neighbours. Thus if V(1, 2) is such as to favour parallel alignment of molecules 1
and 2, it follows from (11), (12) or (13) that ¢(1, 2), and hence g(1, 2), will be enhanced for pairs
that are parallel (0, small) at the expense of pairs that are non-parallel (6, large). The enhance-
ment would seem to be limited, however, to the range over which ¥V (1, 2) /k T is significant. If the
range of the correlations proves to be much greater than that, we must surely infer that for
nematic liquids (11)—(13) are insufficient.

3. TWo REASONS FOR DOUBT
It is my belief that the correlations of orientation represented by
oa(Rys) — 53
are in a typical nematic of far longer range than the possible range of V(1, 2) — that this quantity
diminishes with distance, in fact, only as fast as 1/R. If this assertion is correct, it not only casts

doubt on the approximations on which Stecki and his coworkers have been forced to rely; it also
[ 48]
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THEORIES OF NEMATIC ORDER 119

implies that attempts to render the cluster model convincing, by steadily increasing the size of
the clusters, are doomed to failure. A second reason for doubting the theories outlined in the
previous section is that they include no allowance for the director fluctuations mentioned at the
and of § 1. These two points will now be amplified.

Imagine a macroscopic cylinder whose sides have been ‘rubbed’ longitudinally to favour
parallel alignment of the director in any nematic liquid brought into contact with them, and
whose ends have been otherwise treated to favour perpendicular alignment. If immersed in a
nematic with its axis parallel to the director, this cylinder need cause no distortion of the director
field. Ifit is then tilted through an angle f3,, however, as shown in figure 2, the director will tilt
too, by an angle #(R), where R is measured from the centre of the cylinder. Now it is easily

.
¥ !

I/ X :_\ﬁ://

P

Ficure 2. Rotation of the ;:ylinder about O through an angle f; rotates
the director at P through f#(R).

shown that when the three Frank constants are all equal, which is true of the model nematic

investigated by Zannoni (1979) and others, though not of any real nematic yet identified, the

configuration that minimizes the free energy stored in the nematic is such that #(R) satisfies
, .

Laplace’s equation V24 = 0; (14)

this is the form that the Euler-Lagrange equation takes for the problem in question. Hence we
know that the equilibrium tilt can be expressed as a sum of spherical harmonic functions of the
angle y between R and the cylinder axis, i.e. that

Bl Py = (a/R) +(b/R)* {3(3cos y — 1)} + O(1/R)". (15)
At large distances only the first term in this series need be retained, and its coeflicient a is clearly
a length intermediate between half the length of the cylinder and its radius. Hence if 0 is the
angle between the axis of the cylinder and the z axis of a molecule at R, which is inclined at £,
to the director at that point, we have

(By(cos 0)) = (Fy(cos fy)) Pyl cos {1 — (afp/R)}]

= S{Py(cos ;) + 3(apy/R) sin 3, cos 8y + O(a/R)?}. (16)

Now imagine the cylinder to be, in fact, one of the molecules of which the nematic is composed.

If correlations of orientation exist between nearest neighbours, any tilt of this central molecule

must have some effect on the surrounding nematic, and we may reasonably hope to represent

this effect by adjusting the length and radius of the cylinder and by treating everything outside

the cylinder as a continuum in which (14) applies. The model suggests, if (16) is averaged over /3,
that at large distances

(72(R) —53) = 3(a/R) Sy(Bysin By cos ), (17)

[ 49 ] 12-2


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

120 T. E. FABER

with @ now a length of molecular dimensions. For well oriented nematics (S, > 0.7, say) we can
expand thus:
3(fsin By cos B> = 3(sin? ;) —sin? B> +...

= 2(1-.5,) — (56 — 808, + 245,) /105 + ..., (18)

in the expectation that higher terms will be negligible. Hence we may estimate, using equation
(26) below for S,, that at large distances

{o3(R) — 83} ~ 0.22(a/R) (for S, = 0.867) (19)

~ 0.34(a/R) (for S, = 0.753). (20)

Evidence for the validity of thesg predictions is provided by figure 3, reproduced from Faber

(1980). In this figure the crosses represent values of o,(7) computed by Zannoni (1979) for the

N
08”‘\2:0\ - (a)
) —_ 0O— —o
R = b3
L
o
T\
. N2
O (6)
e N T ¥ _y To°
.\x\
\.
~
x
-~ - d
0.4 X 2 ( ) s
| L l |
1 3 5
n

Ficure 3. The short-range order parameter o,(n) plotted against n, for a 10 x 10 x 10 lattice of molecules subject
to a nearest-neighbour interaction —eP,(cos;): (a) kT/e = 0.5; (b) kT/e = 0.8; (¢) kT/e = 0.9;
(d) kT/e = 1.0. The filled circles are theoretical predictions, and the horizontal lines to which they converge
for large n are predicted values of S3 for the 10 x 10 x 10 lattice at the temperature in question. The crosses
show data generated by computer simulation. The open circles are calculated by using the same theory but
for an infinite lattice. The values of £ T /e for which they apply are slightly different from 0.5 and 0.8, having
been chosen to ensure that S5 is the same as for the filled circles just below them. (Redrawn from Faber
(1980).)
lattice model described above, plotted in effect against R; n is here the magnitude of R, measured
in units of the lattice spacing, d. They are for four different values of (£7"/¢), and the four hori-
zontal lines represent the corresponding values of S3. From these points alone one might conclude
that the correlations of orientation, although appreciable up to n = 3, have virtually disappeared
by the time n = 4 or 5. In this respect, however, results for a relatively small sample, only
10 x 10 x 10 with periodic boundary conditions, give a misleading impression; had we relied on
the computer-simulation results of Luckhurst & Romano (1980), who used a sample even smaller
than Zannoni’s (256 molecules, not confined to a lattice but kept apart by an isotropic Lennard—
Jones potential, in a cubic cell with periodic boundary conditions), we would have concluded
that the correlations of orientation were negligible beyond about two nearest-neighbour spacings.
The open circles in the top two diagrams of figure 3 give a better picture of what (o, —5%) should
look like in an infinite lattice. Admittedly they are based upon a theory (sec below) rather than
on computer simulation, but the filled circles show that the theory is to be taken seriously; these
filled circles were calculated in just the same way as the open circles but for a 10 x 10 x 10 lattice,
[ 50 |
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and they match Zannoni’s crosses rather convincingly, considering that no adjustable parameter
is involved. In the top two diagrams the open circles are converging for large n onto (0.867)2
and (0.753)2. The rate at which they do so seems to be nicely consistent with (19) and (20)
respectively, with a taking the reasonable value of about 4, virtually independent of temperature.
That is the argument for believing that correlations of orientation in nematics are essentially
oflong range, varying as 1/R. The argument for believing that director fluctuations are important
in any realistic theory of nematics is equally straightforward. Light-scattering experiments
indicate (Orsay Liquid Crystal Group 1969) that these fluctuations may be viewed as the super-
position of a spectrum of periodic distortion modes, each of them excited, according to the equi-
partition theorem, with mean square amplitude
Y*) =kT/VKg® (21)
for kyy = kyy = k33 = K;; here ¢ is the local angle of tilt of the director associated with a mode
of wavevector q. Because excitation of any one mode may be shown to reduce the overall value

of S, by a factor (Py(cos )y = 1= 32,
it follows that excitation of a spectrum of modes up to some cut-off wave vector ¢, should reduce
it from §,(0) to Sy = 8y(0) exp (— 3 T (Y2
q
_ 3T [4mgidq) .
-5 o0 (=t [ K ) 22)

a factor 2 in (22) takes care of the two polarizations that are allowed for each value of q. To
illustrate the possible importance of the exponential we may take the model nematic discussed by
Zannoni as an example. For this it may be shown (Faber 1980) that when S, = 0.5

K(g—0) ~ (kT/2d). (23)
Hence, if we neglect the possible variation of K(¢) with ¢, we find
Sy & 85(0) exp (—2d/2), (24)

where A, is the cut-off wavelength (i.e. 2m/q,).

Of course if one is to take into account only those modes for whose reality direct evidence is
provided by light-scattering experiments, this means setting A, equal to about 200 nm, which is
so much larger than the intermolecular spacing in a typical nematic as to make a quantity such as
2d/ A quite negligible. There is no real justification for cutting off the spectrum so soon, however.
In Zannoni’s lattice model, distortion modes of wavelength down to 2d are quite conceivable,
and for such modes, indeed, K(g) is likely to be rather smaller than for long wavelengths,T and
the mean square amplitude correspondingly greater. Such considerations make the exponential
correction factor in (24) look decidedly significant.

The contribution of director fluctuation to S, in nematics has been emphasized by a number of
people besides myself, e.g. by Berreman (1975) and M. Warner (personal communication 1982).
The long-range (1/R) nature of orientation correlations is implicit in some results obtained by
de Gennes (1969).

4. AN ALTERNATIVE THEORY
The two criticisms of conventional theories that have been voiced in the previous section are
arguably two sides of a single coin: the long-range tail in (o, —53) may be seen as an inevitable

1 Equations quoted by Faber (1980) show that
K(q)/K(qg—>0) = 2(1—cos ¢d)/q%d>.
[ 61 ]
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122 T. E. FABER

consequence of the contribution that distortion modes of long wavelength make to the destruction
of nematic order.

In my alternative theory (Faber 19774, 1980), director fluctuations play the dominant role.
It is assumed that but for these fluctuations the molecular alignment would be perfect, i.e. that
S5(0) and likewise S,(0), etc., are unity. For the simple cubic lattice model of Zannoni the mode
spectrum is cut off on the surfaces of a cubic Brillouin zone in g-space, i.e. on the planes
¢, = *mn/d, g, = +n/d, ¢, = +n/d. Otherwise the spectrum is cut off on a spherical surface of
radius ¢,, of sufficient volume to enclose 2N distinct modes, 2N being the number of orientational,
as opposed to translational, degrees of freedom in a nematic system of N molecules. The theory
leads to an expression for .S, in terms of (k7/¢) and N for the lattice model or more generally in
terms of the Frank constants £,y, £y, and £gg. It suggests a distribution function f(#) such that

InS, = {n(n+1)InsS,, (25)
which means that Sy = 8%, (26)
Se = 53, etc. (27)

It enables quantities such as o, and o, to be worked out, and for the simple cubic lattice model
(at any rate for R = d and in the limit N -+ o0) it predicts a relation between these quantities,
which may be expressed to a high degree of accuracy by the equation (Faber 1981)

Oy =0y . (28)
It has been used to discuss the order-dependence of the Frank constants (Faber 19776, 1981), with
results that differ significantly from those of mean field theories. Finally, it provides a way of
calculating time-dependent correlation functions of relevance to the theories of nuclear magnetic
relaxation (Faber 1977¢) and dielectric dispersion in nematics; direct information about the
behaviour of these correlation functions in model nematics is beginning to be available from
computer-simulation studies (Zannoni & Guerra 1981).

1.0
\
. =
x
0.8+ \X\ ~
3 \x
~
Nx
S N ™~
0.6 "\x AN
\
i %
04 1 ; | L ! 1 \
0 04 0.8 1.2
kr/e

Ficure 4. Dependence of S, on (k7€) for the 10x 10 x 10 lattice of figure 3. The full curve represents the
theoretical prediction and the crosses show data generated by computer simulation. (The broken curve is
predicted by mean field theory.)

The success of this so-called ‘ continuum theory of nematic disorder’ in matching, without any
adjustable parameter, Zannoni’s results for o,(n) against » in a 10 x 10 x 10 sample has been
illustrated in figure 2 above. Figure 4 shows that it can also match, again without any adjustable
parameter, his results for S, against (k7'/¢) in the same sample, except in the region near
T =T, where §, falls below, say, 0.5.

Figure 5 shows how S, varies with Sy, not just for the model studied by Zannoni (1979) and
Zannoni & Guerra (1981) but for two quite different models — smaller in size, involving different

[ 52 ]
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intermolecular potentials, and with no constraining lattice — on which Tsykalo & Bagmet
(19784, b) have performed computer-simulation experiments. The figure includes points
showing how, in Zannoni’s model, o,(d) varies with o,(d). The data seem to confirm that there
is a more or less unique, model-independent, relation between $; and S, and that the relation
between o,(d) and o,(d) is very similar. At low temperatures it is accurately described by (20)
or (28) as the case may be, but systematic deviations become apparent when S, or o, fall below,
say, 0.6.

T

0.1

S, or oy

0.4+

! L
1.0 0.8 06 0.4

S, or o,

FIGURE 5. Relation between Sy and §,, or between o,(d) and o,(d), on a logarithmic plot. The points represent
data generated by computer simulation by using three distinct models: O, Zannoni (1979) (S, against .S,);
o, Zannoni & Guerra (1981) (S, against Sy); x , Tsykalo & Bagmet (19784, b) (S, against S,); ®, Zannoni
(1979) (04 against S,). The straight line represents the predicted 12 power law.

Zannoni & Guerra (1981) have provided two values for Sg in the 10 x 10 x 10 lattice model
that may be compared with predictions based on (27). Where S, is 0.833 the predicted value is
0.278: the computed value is 0.298 ( + ?). Where S, is 0.620 ( 4 0.005) the predicted value is
0.035 (£ 0.003): the computed value is 0.05 ( + ?). The agreement is not unsatisfactory.

By and large, therefore, the results of computer-simulation studies confirm the reliability of
the continuum approach at low temperatures but show that it cannot be trusted to describe the
transition into the isotropic phase, at which S, is often as low as 0.35. These conclusions are
scarcely a surprise. Since the theory takes the perfectly aligned state as its starting point —
whereas theories like that of Stecki & Kloczkowski (1979) tend to start from the isotropic phase —
it is bound to work best at low temperatures. Since the r.m.s. amplitude of each distortion mode
depends (see (21)) on the magnitude of K, and since the magnitude of K depends upon the degree
to which all the other modes are excited, an element of approximation enters the theory at an early
stage, where the modes are assumed to be independent of one another and therefore excited with
random phase. It is presumably this approximation that begins to fail as 7, is approached.

To test the theory against the behaviour of real nematics one needs first to measure, with
considerable precision, the three Frank constants £, &y, and 3, for small ¢ and then to evaluate
the appropriate average of these to use in expressions such as (21) and (22) above. An equation
defining the average has been given by Faber (19774), though he has emphasized that it may give
too much weight to the ‘bend’ constant kg5, and since this does not necessarily vary with
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124 T. E. FABER

temperature in quite the same way as k,; and k,, the use of that equation may introduce some
error. Then if reliable values of S, are available one may plot In.S, against (7p*/K), where
p is density. A straight line is to be expected, at any rate for temperatures such that S, > 0.5
or 0.6. The intercept on the In S, axis should tell us $,(0), and this is expected to be unity. The
slope should be given (Bunning et al. 1981) by

—InS,/(Tp¥/K) = 0.76k(N/M)}. (29)

The numerical coefficient in (29) depends upon how K(g) varies with g¢; the figure 0.76 is based
upon a detailed analysis of the lattice model discussed above, and for real nematics it may be in
error by 20 % or so.

0.6 e

O\

| | |
5 10 15

10-14 (Tp¥/K) /(K kg? J-)

Ficurk 6. Test of continuum theory for nematic 5CB. The scale for S, is logarithmic.

Figure 6 shows such a plot for the nematic for which the most reliable information is currently
available, 4'-n-pentyl-4-cyanobiphenyl or 5CB. It is an updated version of a figure plotted
already by Bunning et al. (1981), using nine values of S, that Emsley et al. (1981) have derived
from the proton n.m.r. spectrum of a 5CB specimen in which all but the four protons on one of
the phenyl rings have been replaced by deuterons, and using our own values of the magnetic
anisotropy Ay to calculate k,;, &y, and kg, because we now have reason (Faber ef al. 1983) to
prefer these to the Groningen data on which Bunning et al. relied. A straight line can indeed be
fitted to the points for which S, > 0.5. Tts intercept corresponds to S, = 0.82 rather than unity,
however, and its slope is 0.63 x 10-15 J kg=3 K1, whereas the slope predicted by (29) is
1.4 x 10715 J kg—# K-1. We have enough information available about the properties of other
cyanobiphenyl derivatives to know that they would all show similar discrepancies.

All cyanobiphenyl derivatives are strongly polar, of course, and there is evidence from X-ray
diffraction (Leadbetter et al.1975) and from dielectric permittivity measurements (Chandrasekhar
1977) that neighbouring molecules associate on this account. One way to explain why the slope
of the straight line in figure 6 is about half the expected value is to postulate that the molecules
form strongly associated pairs, because pairing would halve the number of orientational degrees
of freedom and therefore halve the number of distortion modes contributing to ¥, {}*) (see(22)).
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Pairing would explain the anomalous intercept too, if it could be shown that the two members of
a pair are not collinear but lie with their z axes inclined to each other at an angle of about 40°.
It is probable, however, that other complicating factors are involved, including the secondary
ordering described by (S, —1,,) and the non-rigid character of that part of each molecule that
consists of an alkyl chain. Ideally, the theory should be tested against the behaviour of a non-polar
nematic without a flexible end chain, for which (S, —S,,) is known to be zero.

5. CONCLUSIONS

The idea of pairing between molecules of 5CB brings us back to the cluster model of §2 and
may indicate the way forward to a more realistic theory of nematics than any yet discussed. If we
could find some way to deal exactly with the correlations of orientation and position to be
expected within a cluster of, say, a dozen molecules, we could hope to describe correlations
between clusters by using the theory outlined in §4. Complete understanding of the situation
near 7;, however, where S, is neither small nor close to unity, may remain elusive for many
years yet.
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Discussion

Lin Ler (Institute of Physics, Chinese Academy of Sciences, Beijing, China). Does Dr Faber’s theory
produce (P> < 0, which are observed in some experiments on nematics?

T. E. FaBer. No, unless one is prepared to postulate that the quantity that I have called $,(0)
is negative. The sort of model I have suggested in my paper to explain values of S,(0) as low as
0.82 could in principle be used to explain negative values of §,(0).

L. G. P. DavmovLEN (Solid State Physics Laboratory, University of Groningen, The Netherlands). Recently,
negative values of the order parameter (P, of different compounds, measured by polarized
Raman scattering, have been reported in the literature. Theoreticians seem to be worried about
that because mean field and other theories cannot predict such negative results for (P;). We
(Dalmolen & de Jeu, J. chem. Phys. (in the press)) measured the order parameters of various
compounds, among which some were reported to have a negative (£, with polarized Raman
scattering. In all cases either a mean field behaviour of (£, was observed or lower values between
0.05 and 0.15, but not negative. In our opinion the negative values of (P,) reported can be
ascribed to either inadequate correction of the scattering of the sample or improper calibration.
The latter point is evident from large discrepancies in the values of R;,, the depolarization in the
isotropic phase. We therefore feel that the problem of the negative values of () is just an experi-
mental and not a theoretical one.

Sk CuARLEs Frank, F.R.S. (The University, Bristol). I see no reason to doubt the accuracy of
some experimental observations just because they yield a negative value for {F,y. To doubt it
because in some other cases (P, is positive is like saying ‘I have looked at 20 mountains which
didn’t have craters at the top: therefore there are no volcanoes’. I think so long as one makes
theories with cylindrical molecules one will predict a positive { Py, but if one makes the theory for
molecules shaped like dog-bones, negative (F,) is a likely outcome: and on the whole molecules
are rather more like dog-bones than they are like pencils.
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